logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Solve by matrix inversion method following system of linear equation$\;x-3y-8z+10=0\;,3x+y=4\;,2x+5y+6z=13$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Let $ A = [ a_{ij} ] $ be a square matrix x. Let $ A_{ij}$ be the cofactor of $ a_{ij}$. Then $ [ A_{ij}]$ is the matrix of cofactors and $ adj\: A $ ( or adjoint of the matrix A) is given by $ adj\: A=[A_{ij}]^T$
  • The inverse of a non-singular square matrix A is given by $ A^{-1} = \frac{1}{|A|} adj\: A.$ A non-singular matrix is one whose determinant value is nonzero.
  • A system of x linear non-homogeneous equations in x unknowns given by
  • $ a_{11}x_1 +a_{12}x_2 \dotsc + a_{1n}x_n = b_1$
  • $ a_{22}x_1 +a_{22}x_2 \dotsc + a_{2n}x_n = b_2$
  • $\: \: \: \: \vdots \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \vdots $
  • $ a_{n1}x_1 +a_{n2}x_2 \dotsc + a_{nn}x_n = b_n$ can be written as $ AX = B$ in matrix form where $ A = [a_{ij}], x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ and $ B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ If A is non-singular $ ( |A| \neq 0 )$ the inverse $A^{-1}$ exists and the system can be solved by matrix inversion $ X = A^{-1}B$
Step 1
The system can be written in matrix form as $ AX = B $
$ A = \begin{bmatrix} 1 & -3 & -8 \\ 3 & 1 & 0 \\ 2 & 5 & 6 \end{bmatrix} , X = \begin{bmatrix}x \\ y \\ z \end{bmatrix} , B \begin{bmatrix}-10 \\ 4 \\ 13 \end{bmatrix}$
$ |A| = \begin{vmatrix} 1 & -3 & -8 \\ 3 & 1 & 0 \\ 2 & 5 & 6 \end{vmatrix} = 1(6-0)+3(18-0)-8(15-2)$
$ = 6+54-104=-44 \neq 0$
The system can be solved by matrix inversion $ X = A^{-1}B$
Step 2
To find $ A^{-1}$
$ [A_{ij}] =$ the cofactor matrix = $ \begin{bmatrix} (6-0) & -(18-0) & (15-2) \\ -(18+40) & (6+16) & -(5+6) \\ (0+8) & -(0+24) & (1+9) \end{bmatrix}$
$ = \begin{bmatrix} 6 & -18 & 13 \\ -22 & 22 & -11 \\ 8 & -24 & 10 \end{bmatrix}$
$A^{-1} = \large\frac{1}{|A|} adj\: A = \large\frac{1}{|A|} [A_{ij}]^T = \large\frac{1}{-44} \begin{bmatrix} 6 & -22 & 8 \\ -18 & 22 & -24 \\ 13 & -11 & 10 \end{bmatrix}$
$ X = A^{-1}B = \large\frac{-1}{44} \begin{bmatrix} 6 & -22 & 8 \\ -18 & 22 & -24 \\ 13 & -11 & 10 \end{bmatrix} \begin{bmatrix} -10 \\ 4 \\ 13 \end{bmatrix}$
$ = \large\frac{-1}{44} \begin{bmatrix} -60 & -88 & +104 \\ 180 & +88 & -312 \\ -130 & -44 & +130 \end{bmatrix}$
$ = \large\frac{-1}{44} \begin{bmatrix}-44 \\ -44 \\ -44 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
$ \therefore x = 1, y=1, z=1 $

 

answered May 25, 2013 by thanvigandhi_1
edited May 27, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...