logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

Express the following complex numbers in polar form. $1 - \mathit{i}$

This is the fourth part of the multi-part Q6.
Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If $z=x+iy$ is written in exponential form as $z=r(\cos \theta+i\sin \theta),r=\sqrt{x^2+y^2}$ and the argument $\theta$ is given by the following rule
  • $\theta=\pi-\alpha\Rightarrow \theta=\alpha$
  • $\theta=-\pi+\alpha\Rightarrow \theta=-\alpha$
  • Where $\alpha=\tan^{-1}\mid\large\frac{y}{x}\mid$ and $(x,y)$ lies in one of the four quadrants (or the axes).
Step 1:
Let $1-i=r(\cos \theta+i\sin \theta)$
$r\cos\theta=1,r\sin \theta=-1$
Squaring and adding we get
$r^2=1^2+1^2\Rightarrow r=\sqrt{1+1}=\sqrt 2$
$\alpha=\tan^{-1}=\mid \large\frac{-1}{1}\mid=$$\tan^{-1}1$
$\alpha\Rightarrow \large\frac{\pi}{4}$
Step 2:
The point representing $1-i$ lies in quadrant 4.
Therefore $\theta=-\alpha=-\large\frac{\pi}{4}$
$1-i=i(\cos\big(\large\frac{-\pi}{4}\big)$$+i\sin\big(\large\frac{-\pi}{4}\big))$
answered Jun 10, 2013 by sreemathi.v
edited Jul 19, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...