Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If arg $\left ( z-1 \right )$ = $\large\frac{\pi}{6}$ and arg $\left ( z+1 \right )$ = 2$\large\frac{\pi}{3}$ then prove that $\left | z \right |=1$

Can you answer this question?

1 Answer

0 votes
  • If $z=x+iy$ is written in exponential form as $z=r(\cos \theta+i\sin \theta),r=\sqrt{x^2+y^2}$ and the argument $\theta$ is given by the following rule
  • $\theta=\pi-\alpha\Rightarrow \theta=\alpha$
  • $\theta=-\pi+\alpha\Rightarrow \theta=-\alpha$
  • Where $\alpha=\tan^{-1}\mid\large\frac{y}{x}\mid$ and $(x,y)$ lies in one of the four quadrants (or the axes).
Step 1:
Let $z=x+iy\Rightarrow z-1=x+iy-1=(x-1)+iy$
Therefore $\large\frac{y}{x-1}$$=\tan\large\frac{\pi}{6}$
(i.e)$\large\frac{y}{x-1}=\large\frac{1}{\sqrt 3}$
$\Rightarrow x-\sqrt 3y=1$------(1)
(i.e)$\large\frac{y}{x+1}$$=-\sqrt 3$
$\Rightarrow\sqrt 3 x+y=-\sqrt 3$------(2)
Step 2:
Squaring and adding (1) and (2) we get
$(x-\sqrt 3y)^2+(\sqrt 3x+y)^2=1+3$
$x^2+3y^2-2\sqrt 3xy+3x^2+y^2+2\sqrt 3xy=4$
Therefore $x^2+y^2=1=\mid z\mid^2$
$\Rightarrow \mid z\mid=1$
Hence proved.
answered Jun 10, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App