logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Find the angles which the vector $\overrightarrow{i}-\overrightarrow{j}+\sqrt{2}\overrightarrow{k}$ makes with the coordinate axes.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If $ \overrightarrow a = a_1\overrightarrow i+a_2\overrightarrow j+a_3\overrightarrow k$ then $|\overrightarrow a|=\sqrt{a_1^2+a_2^2+a_3^3}$
  • The direction cosines of vector $ \overrightarrow a=a_1\overrightarrow i+a_2\overrightarrow j+a_3\overrightarrow k$ are $ l = \large\frac{a_1}{|\overrightarrow a|}, m = \large\frac{a_2}{|\overrightarrow a|}, n = \large\frac{a_3}{|\overrightarrow a|}$. The angles made by $ \overrightarrow a$ with the coordinate axes are $ \cos^{-1}l, \: \cos^{-1}m, \: \cos^{-1}n.$
Step 1
The direction cosines of $ \overrightarrow a = \overrightarrow i-\overrightarrow j+\sqrt 2 \overrightarrow k$ are obtained.
$ |\overrightarrow a|=\sqrt{1+1+2}=\sqrt 4=2$
$ \therefore l = \large\frac{a_1}{|\overrightarrow a|} = \large\frac{1}{2},m = \large\frac{a_2}{|\overrightarrow a|} = \large\frac{-1}{2}. n = \large\frac{a_3}{|\overrightarrow a|}=\large\frac{\sqrt 2}{2}=\large\frac{1}{\sqrt 2}$
Step 2
Then the angles made by $ \overrightarrow a$ with the coordinate axes are
$ \alpha = \cos^{-1}l = \cos^{-1} \large\frac{1}{2} = \large\frac{\pi}{3}$
$ \beta = \cos^{-1}m = \cos^{-1} -\large\frac{1}{2} = \large\frac{2\pi}{3}$
$ \gamma = \cos^{-1}n = \cos^{-1} \large\frac{1}{\sqrt 2} = \large\frac{\pi}{4}$

 

answered May 31, 2013 by thanvigandhi_1
edited Jun 20, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...