logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Show that the points whose position vectors $\overrightarrow{4i}-\overrightarrow{3j}+\overrightarrow{k}, \overrightarrow{2i}-\overrightarrow{4j}+\overrightarrow{5k} ,\overrightarrow{i}-\overrightarrow{j}$ form a right angled tringle.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • By $ \Delta$ law of vectors if $ \overrightarrow a+\overrightarrow b=\overrightarrow c \: or \: \overrightarrow a+\overrightarrow b=-\overrightarrow c$ then the vectors form the sides of a $ \Delta$
Method 1 Step 1
Let the points A, B, C have position vectors $ \overrightarrow {OA}=4\overrightarrow i-3\overrightarrow j+\overrightarrow k, \: \overrightarrow {OB}=2\overrightarrow i-4\overrightarrow j+5\overrightarrow k, \: \overrightarrow {OC}=\overrightarrow i-\overrightarrow j.$
Then the sides of the $ \Delta$ ABC formed by them are given by
$ \overrightarrow {AB}=\overrightarrow {OB}-\overrightarrow {OA}=(2\overrightarrow i-4\overrightarrow j+5\overrightarrow k)-(4\overrightarrow i-3\overrightarrow j+\overrightarrow k)$
$ = -2\overrightarrow i-\overrightarrow j+4\overrightarrow k$
$ \overrightarrow {BC}=\overrightarrow {OC}-\overrightarrow {OB}=-\overrightarrow i+3\overrightarrow j-5\overrightarrow k$
$\overrightarrow {CA}=\overrightarrow {OA}-\overrightarrow {OC}=3\overrightarrow i-2\overrightarrow j+\overrightarrow k$
Step 2
Now $ \overrightarrow {AB}.\overrightarrow {BC}=(-2)(-1)+(-1)(3)+(4)(-5)$
$ = 2-3-20=-21 \neq 0$
$\overrightarrow {BC}.\overrightarrow{CA}=(-1)(3)+(3)(-2)+(-5)(1)$
$=-3-6-5=-14 \neq 0$
$ \overrightarrow {CA}.\overrightarrow {AB}=(3)(-2)+(-2)(-1)+(1)(4)$
$ -6+2+4=0$
Step 3
$\overrightarrow {CA}.\overrightarrow {AB}=0 \Rightarrow {CA} \perp \overrightarrow {AB} \Rightarrow \Delta ABC$ is right angled at A.
Method 2
Step 1 and 2 as above.
Step 3
$ |\overrightarrow {AB}| = \sqrt{4+1+16}=\sqrt{21}=AB$
$ |\overrightarrow {BC}| = \sqrt{1+9+25}=\sqrt{35}=BC$
$ |\overrightarrow {CA}| = \sqrt{9+4+1}=\sqrt{14}=CA$
$ AB^2+CA^2=21+14=35=BC^2$
$ \therefore \Delta  ABC $  is rightangled at  A, by converse of pythogorus theorem.

 

answered Jun 2, 2013 by thanvigandhi_1
edited Jun 20, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...