Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Prove by vector method , The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides.

Can you answer this question?

1 Answer

0 votes
  • For any two vectors $ \hat a \: and \: \hat b$ $(\hat a + \hat b)^2=(\hat a)^2+2\hat a.\hat b+(\hat b)^2=a^2+2\hat a.\hat b+b^2$ $(\hat a-\hat b)^2=a^2-2\hat a.\hat b+b^2$ $(\hat a+\hat b).(\hat a-\hat b)=a^2-b^2$
  • By $ \Delta$ law of vectors if $ \overrightarrow a+\overrightarrow b=\overrightarrow c \: or \: \overrightarrow a+\overrightarrow b=-\overrightarrow c$ then the vectors form the sides of a $ \Delta$
Let ABCD be the parallelogram with
Now $ \overrightarrow {AC}= \overrightarrow {AB}+ \overrightarrow {BC}$
$ \overrightarrow {BD}= \overrightarrow {BA}+ \overrightarrow {AD}$
$ AC^2=AC^2 = ( \overrightarrow {AB}+ \overrightarrow {BC})^2= \overrightarrow {AB}^2+2 \overrightarrow {AB}. \overrightarrow {BC}+ \overrightarrow {BC}^2$
$ = AB^2+2 \overrightarrow {AB}. \overrightarrow {AD}+ BC^2$ (i)
$ \overrightarrow {BD}^2 = BD^2=( \overrightarrow {BA}+ \overrightarrow {AD})^2=( \overrightarrow {AD}- \overrightarrow {AB})^2= \overrightarrow {AD}^2-1 \overrightarrow {AD}. \overrightarrow {AB}+ \overrightarrow {AB}^2$
$ = AD^2-2\overrightarrow {AB}.\overrightarrow {AD}+\overrightarrow {AB}^2$ (ii)
Adding (i) and (ii)
$AC^2=BD^2=AB^2+\not2\overrightarrow {AB}.\overrightarrow {AD}+BC^2+AD^2-\not2\overrightarrow {AD}.\overrightarrow {AB}+AB^2$
$ = AB^2+BC^2+AD^2+AB^2$ Hence proved
answered Jun 4, 2013 by thanvigandhi_1
edited Jun 6, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App