logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If area of triangle is $35\; sq\; units$ with vertices $(2, -6), (5, 4)$ and $(k, 4)$. Then $k$ is

  \[ (A) 12\qquad (B) -2\qquad (C)-12,-2\qquad (D) 12,-2\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The area of a triangle whose vertices are $(x_1,y_1),(x_2,y_2),(x_3,y_3)$ is given by
  • $\bigtriangleup=\frac{1}{2}\begin{vmatrix}x_1 & y_1 & 1\\x_2 & y_2 & 1\\x_3 &y_3 &1\end{vmatrix}$
  • On expanding along row $R_1$
  • $|\bigtriangleup|=\frac{1}{2}\begin{bmatrix}x_1\begin{vmatrix}y_2 & 1\\y_3 & 1\end{vmatrix}-y_1\begin{vmatrix}x_2 & 1\\x_3 & 1\end{vmatrix}+1\begin{vmatrix}x_2 & y_2\\x_3 & y_3\end{vmatrix}\end{bmatrix}$
If area of a triangle is 35sq,units with vertices (2,-6),(5,4) and (k,4).Then k is\[(A)\;12\quad(B)\;-2\quad(C)\;-12,-2\quad(D)\;12.-2\]
 
The area of the triangle is given by
 
$\bigtriangleup=\frac{1}{2}\begin{vmatrix}x_1 & y_1 & 1\\x_2 & y_2 & 1\\x_3 &y_3 &1\end{vmatrix}$
 
Let (2,-6),(5,4) and (k,4) be ($x_1,y_1),(x_2,y_2),(x_3,y_3)$
 
Now substituting the respective values,we get
 
$0=\frac{1}{2}\begin{vmatrix}2 & -6 & 1\\5 & 4 & 1\\k & 4 & 1\end{vmatrix}$
 
Now expanding along the row $R_1$ we get
 
$35=\frac{1}{2}\begin{bmatrix}2\begin{vmatrix}4 & 1\\4 & 1\end{vmatrix}-(-6)\begin{vmatrix}5 & 1\\k & 1\end{vmatrix}+1\begin{vmatrix}5 & 4\\k& 4\end{vmatrix}\end{bmatrix}$
 
70=[2(4-4)+6(5-k)+1(20-4k)]
 
70=0+30-6k+20-4k
 
70=-10k+50
 
20=-10k$\Rightarrow k=-2.$
 
Hence B is the correct answer.

 

answered Feb 23, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...