logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Evaluate $\left|\begin{array}{ccc} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^{n} \\ \omega^n & \omega^{2n} & 1 \end{array}\right|$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i) If two rows or columns are identical then the value of the determinant is zero
  • (ii)Elementary transformation can be made by
  • (a) interchanging two rows or columns
  • (b) By adding or subtracting two or more rows or columns.
Let $\Delta=\left|\begin{array}{ccc} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^{n} \\ \omega^n & \omega^{2n} & 1 \end{array}\right|$
We know $\omega^3=1\qquad Therefore\; \omega^{3n}=1$
Hence substitute for 1 in $R_1$ in the determinant we get
$\Delta=\left|\begin{array}{ccc} \omega^{3n} & \omega^{n} & \omega^{2n} \\ \omega^{2n} & 1 & \omega^{n} \\ \omega^n & \omega^{2n} & 1 \end{array}\right|$
Now let us take $\omega^n$ as the common factor from $R_1$
$\Delta=\omega^{n}\left|\begin{array}{ccc} \omega^{2n} & 1 & \omega^n \\ \omega^{2n} & 1 & \omega^{n} \\ \omega^n & \omega^{2n} & 1 \end{array}\right|$
Here two rows $R_1$ and $R_2$ are identical .
Hence the value of the determinant is zero
Therefore $\Delta=0$
Solution : option A is correct

 

answered Apr 4, 2013 by meena.p
edited Dec 24, 2013 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...