logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

If $|\overrightarrow{a}|=3, |\overrightarrow{b}|=4$ and $\overrightarrow{a}.\overrightarrow{b}=9$ than find $|\overrightarrow{a} \times \overrightarrow{b}|$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $ \overrightarrow a.\overrightarrow b=| \overrightarrow a|| \overrightarrow b| \cos \theta$ $ \therefore \cos \theta = \large\frac{ \overrightarrow a. \overrightarrow b}{| \overrightarrow a|| \overrightarrow b|} \Rightarrow \theta = \cos^{-1} \large\frac{ \overrightarrow a. \overrightarrow b}{| \overrightarrow a|| \overrightarrow b|}$
  • For two vectors $ \overrightarrow a \: and \: \overrightarrow b$, the vector product $ \overrightarrow a$ x $ \overrightarrow b=|\overrightarrow a||\overrightarrow b| \sin \theta \overrightarrow n$ with $ \overrightarrow n \perp $ to $ \overrightarrow a \: and \: \overrightarrow b\: and \: \overrightarrow a, \overrightarrow b, \overrightarrow n$ forming a right handed system.
Step 1
$ \overrightarrow a.\overrightarrow b = |\overrightarrow a||\overrightarrow b| \cos \theta = (3)(4) \cos \theta$
$ \therefore 9 = 12 \cos \theta \: or \: \cos \theta = \large\frac{9}{12} = \large\frac{3}{4}$
Since $ \cos \theta > 0, \: \theta$ is acute. $ \therefore \sin \theta > 0$
Step 2
$ \sin \theta = \sqrt{1-cos^2 \theta} = \sqrt{1-\large\frac{9}{16}} = \large\frac{\sqrt{7}}{4}$
Step 3
$ | \overrightarrow a $ x $ \overrightarrow b | = | \overrightarrow a | | \overrightarrow b | \sin \theta = (3)(4) \large\frac{\sqrt{7}}{4} = 3\sqrt 7$

 

answered Jun 5, 2013 by thanvigandhi_1
edited Jun 21, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...