logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Find the inverse of the following matrices if it exists using elementary operations $\begin{bmatrix}2 & -6\\1 & -2\end{bmatrix}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • In order to find the inverse using column elementary transformation we write as A=AI
$\begin{bmatrix}2 & -6\\1 & -2\end{bmatrix}=A\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$
Step 1: Apply $C_1\rightarrow \frac{1}{2}C_1$
$\begin{bmatrix}1 & -6\\\frac{1}{2} & -2\end{bmatrix}=A\begin{bmatrix}\frac{1}{2} & 0\\0 & 1\end{bmatrix}$
Step 2: Apply $C_2\rightarrow C_2+6C_1$
$\begin{bmatrix}1 & 0\\\frac{1}{2} & 1\end{bmatrix}=A\begin{bmatrix}\frac{1}{2} & 3\\0 & 1\end{bmatrix}$
Step 3: Apply $C_1\rightarrow C_1-\frac{1}{2}C_2$
$\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}=A\begin{bmatrix}-1 & 3\\\frac{-1}{2} & 1\end{bmatrix}$
 
Step 4: $A^{-1}=\begin{bmatrix}-1 & 3\\\frac{-1}{2} & 1\end{bmatrix}$
answered Apr 4, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...