logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Find $A^{-1}$ if it exists by using elementary transformations where A=$\begin{bmatrix}6 & -3\\-2 & 1\end{bmatrix}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • In order to find inverse by using row elementary transformation we write as A=IA.
$\begin{bmatrix}6 & -3\\-2 & 1\end{bmatrix}=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}A$
Step 1: Apply $R_1=\frac{1}{6}R_1$
$\begin{bmatrix}1 & \frac{-1}{2}\\-2 & 1\end{bmatrix}=\begin{bmatrix}\frac{1}{6} & 0\\0 & 1\end{bmatrix}A$
Step 2: Apply $R_2\rightarrow R_2+2R_1$
$\begin{bmatrix}1 & \frac{-1}{2}\\0 & 0\end{bmatrix}=\begin{bmatrix}\frac{1}{6} & 0\\\frac{1}{3} & 1\end{bmatrix}A$
Step 3: Since in the matrix on LHS all elements of second row are zero.Therefore $A^{-1}$ does not exists.
answered Apr 4, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...