Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

Find $A^{-1}$ if it exists by using elementary transformations where A=$\begin{bmatrix}6 & -3\\-2 & 1\end{bmatrix}$

Can you answer this question?

1 Answer

0 votes
  • In order to find inverse by using row elementary transformation we write as A=IA.
$\begin{bmatrix}6 & -3\\-2 & 1\end{bmatrix}=\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}A$
Step 1: Apply $R_1=\frac{1}{6}R_1$
$\begin{bmatrix}1 & \frac{-1}{2}\\-2 & 1\end{bmatrix}=\begin{bmatrix}\frac{1}{6} & 0\\0 & 1\end{bmatrix}A$
Step 2: Apply $R_2\rightarrow R_2+2R_1$
$\begin{bmatrix}1 & \frac{-1}{2}\\0 & 0\end{bmatrix}=\begin{bmatrix}\frac{1}{6} & 0\\\frac{1}{3} & 1\end{bmatrix}A$
Step 3: Since in the matrix on LHS all elements of second row are zero.Therefore $A^{-1}$ does not exists.
answered Apr 4, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App