Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The general solution of a differential equation of the type $\large\frac{dx}{dy}$$+p_1x=Q_1\;is$

\[ \begin{array}{l} (A)\quad y\;\mathrm{e}^{\int p_1\mathrm{d}y}=\int\bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}y}\bigg)dy+C \\ (B)\quad y\;.\mathrm{e}^{\int p_1\mathrm{d}x}=\int \bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}x}\bigg)dx+C \\ (C)\quad x\;\mathrm{e}^{\int p_1\mathrm{d}y}=\int \bigg(Q_1\mathrm{e}^{\int p_1dy}\bigg)dy+C \\ (D)\quad x\;\mathrm{e}^{\int p_1dx}=\int\bigg(Q_1\mathrm{e}^{\int p_1\mathrm{d}x}\bigg)dx+C \end{array} \]

Can you answer this question?

1 Answer

0 votes
  • If the first order linear equation is of the type $\large\frac{dx}{dy}$$+px=Q$,then the solution is x( I.F) = integration Q.(I.F) + C where I.F =$ e^{\int p dy}$
Using the information in the tool box we find that the given equation is of the form $\large\frac{dx}{dy} $$+ Px = Q$
Hence the solution is x(I.F) = integration of Q.(I.F) dx + C
Here the integral factor is $\int pdy$
Hence C is the correct answer.
answered Jul 29, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App