logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Matrices

If A and B are skew symmetric matrices,then prove that ABA is skew symmetric.

1 Answer

Toolbox:
  • A square matrix A=$[a_{ij}]$ is said to be skew symmetric if A'=-A.
  • (i.e) $[a_{ij}]=-[a_{ji}]$ for all possible value of i & j.
A'=-A.
B'=-B.
[(AB)A]'=A'(AB)'
$\qquad\;\;\;\;=A'(B'A')$
Replace A'=-A & B'=-B.
$\Rightarrow (-A)(-B)(-A)$
$\Rightarrow -(ABA).$
Hence ABA is skew symmetric.
answered Apr 4, 2013 by sreemathi.v
 
...