Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

If a,b,c are positive and unequal,show that the value of the determinant $\Delta=\begin{vmatrix}a & b & c\\b & c & a\\c & a & b\end{vmatrix}$ is negative.

Can you answer this question?

1 Answer

0 votes
  • Elementary transformation can be made by
  • (i) In terchanging the rows or columns.
  • (ii) The addition to the elements of any rows or columns.
  • If $A=\begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\end{bmatrix}$
  • $|A|=a_{11}(a_{22}\times a_{33}-a_{23}\times a_{32})-a_{12}(a_{21}\times a_{33}-a_{23}\times a_{31})+a_{13}(a_{21}\times a_{32}-a_{22}\times a_{31})$
Step 1:Let $\Delta=\begin{vmatrix}a & b& c\\b & c & a\\c & a & b\end{vmatrix}$
Apply $C_1\rightarrow C_1+C_2+C_3$
Hence $\Delta=\begin{vmatrix}a+b+c & b & c\\a+b+c & c & a\\a+b+c & a & b\end{vmatrix}$
Take (a+b+c) as the common factor from $C_1$
Therefore $\Delta=\begin{vmatrix}1 & b& c\\1 & c & a\\1 & a & b\end{vmatrix}$
Apply $R_2\rightarrow R_2-R_1$ and $R_3\rightarrow R_3-R_1$
$\Delta=(a+b+c)\begin{vmatrix}1 & b & c\\0 & c-b & a-c\\0 & a-b & b-c\end{vmatrix}$
Step 2:Now let us expand along $C_1$
Now multiply and divide by -2
But we know$(a+b)^2=a^2+2ab+b^2$
This is negative,since a+b+c>0 and $(a-b)^2+(b-c)^2+(c-a)^2>0.$
Hence proved.
answered Apr 5, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App