Ask Questions, Get Answers

Home  >>  TN XII Math  >>  Vector Algebra

Prove that twice the area of parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.

1 Answer

  • The area of a parallelogram whose sides are $ \overrightarrow a \: and \overrightarrow b \: is \: |\overrightarrow a \times \overrightarrow b|$
Step 1
Let $ABCD$ be a parallelogram .
Consider the parallelogram formed by its diagonals $ \overrightarrow {AC} \: and \: \overrightarrow {BD} $ as adjacent sides
Step 2
The vector are of such a parallelogram would be $ \overrightarrow {AC} \times \overrightarrow {BD} = (\overrightarrow {AB} +\overrightarrow {BC}) \times (\overrightarrow {BA}+\overrightarrow {AD})$
$ = \overrightarrow {AB} \times \overrightarrow {BA}+\overrightarrow {AB} \times \overrightarrow {AD}+\overrightarrow {BC} \times \overrightarrow {BA}+\overrightarrow {BC} \times \overrightarrow {AD}$
$ = \overrightarrow 0 + \overrightarrow {AB} \times \overrightarrow {AD}-\overrightarrow {BC} \times \overrightarrow {AB} + \overrightarrow {AD} \times \overrightarrow {AD}$
$ = \overrightarrow {AB} \times \overrightarrow {AD} - \overrightarrow {AD} \times \overrightarrow {AB}$
$ = \overrightarrow {AB} \times \overrightarrow {AD} +\overrightarrow {AB} \times \overrightarrow {AD}$
$ = 2\overrightarrow {AB} \times \overrightarrow {AD} = 2 $ ( vector area of parallelogram $ABCD $ )
Hence proved


answered Jun 6, 2013 by thanvigandhi_1
edited Jun 23, 2013 by thanvigandhi_1

Related questions