Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Prove that twice the area of parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram.

Can you answer this question?

1 Answer

0 votes
  • The area of a parallelogram whose sides are $ \overrightarrow a \: and \overrightarrow b \: is \: |\overrightarrow a \times \overrightarrow b|$
Step 1
Let $ABCD$ be a parallelogram .
Consider the parallelogram formed by its diagonals $ \overrightarrow {AC} \: and \: \overrightarrow {BD} $ as adjacent sides
Step 2
The vector are of such a parallelogram would be $ \overrightarrow {AC} \times \overrightarrow {BD} = (\overrightarrow {AB} +\overrightarrow {BC}) \times (\overrightarrow {BA}+\overrightarrow {AD})$
$ = \overrightarrow {AB} \times \overrightarrow {BA}+\overrightarrow {AB} \times \overrightarrow {AD}+\overrightarrow {BC} \times \overrightarrow {BA}+\overrightarrow {BC} \times \overrightarrow {AD}$
$ = \overrightarrow 0 + \overrightarrow {AB} \times \overrightarrow {AD}-\overrightarrow {BC} \times \overrightarrow {AB} + \overrightarrow {AD} \times \overrightarrow {AD}$
$ = \overrightarrow {AB} \times \overrightarrow {AD} - \overrightarrow {AD} \times \overrightarrow {AB}$
$ = \overrightarrow {AB} \times \overrightarrow {AD} +\overrightarrow {AB} \times \overrightarrow {AD}$
$ = 2\overrightarrow {AB} \times \overrightarrow {AD} = 2 $ ( vector area of parallelogram $ABCD $ )
Hence proved


answered Jun 6, 2013 by thanvigandhi_1
edited Jun 23, 2013 by thanvigandhi_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App