logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using properties of determinants, evaluate $A=\begin{vmatrix}43 & 1 & 6\\35 & 7 & 4\\17 & 3 &2\end{vmatrix}$

$\begin{array}{1 1} 7 \\ 0 \\ -7 \\ 1 \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If each element of a column consists of m terms,then the determinant can be expressed as the sum of m determinants.
Let $\Delta=\begin{vmatrix}43 & 1 & 6\\35 & 7 & 4\\17 & 3 & 2\end{vmatrix}$
This can be written as
$\Delta=\begin{vmatrix}7\times 6+1 & 1 & 6\\7\times 4+7 & 7 & 4\\7\times 2+3 & 3 & 2\end{vmatrix}$
This can be now splitted as
$\quad=\begin{vmatrix}7\times 6 & 1 & 6\\7\times 4 & 7 & 4\\7\times 2 & 3 & 2\end{vmatrix}+\begin{vmatrix}1 & 1 & 6\\7 & 7 & 4\\3 &3 & 2\end{vmatrix}$
Taking the common factor 7 from $\Delta_1$
$\quad=7\begin{vmatrix} 6 & 1 & 6\\ 4 & 7 & 4\\ 2 & 3 & 2\end{vmatrix}+\begin{vmatrix}1 & 1 & 6\\7 & 7 & 4\\3 &3 & 2\end{vmatrix}$
But since two columns are identical in $\Delta_1$ and $\Delta_2$,then determinant value is zero.
$\Delta=7\times 0+0=0.$
answered Apr 5, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...