logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Prove that $(\overrightarrow{a}\times\overrightarrow{b}) . (\overrightarrow{c}\times\overrightarrow{d}) + (\overrightarrow{b}\times\overrightarrow{c}) . (\overrightarrow{a}\times\overrightarrow{d}) + (\overrightarrow{c}\times\overrightarrow{a}) . (\overrightarrow{b}\times\overrightarrow{d})=0$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Scalar product of four vectors $ ( \overrightarrow a \times \overrightarrow b).(\overrightarrow c \times \overrightarrow a) = \begin{vmatrix} \overrightarrow a.\overrightarrow c & \overrightarrow a.\overrightarrow d \\ \overrightarrow b.\overrightarrow c & \overrightarrow b.\overrightarrow d \end{vmatrix}$
LHS = $ \begin{vmatrix} \overrightarrow a.\overrightarrow c & \overrightarrow a.\overrightarrow d \\ \overrightarrow b.\overrightarrow c & \overrightarrow b.\overrightarrow d \end{vmatrix} + \begin{vmatrix} \overrightarrow b.\overrightarrow a & \overrightarrow b.\overrightarrow d \\ \overrightarrow c.\overrightarrow a & \overrightarrow c.\overrightarrow d \end{vmatrix} + \begin{vmatrix} \overrightarrow c.\overrightarrow b & \overrightarrow c.\overrightarrow d \\ \overrightarrow a.\overrightarrow b & \overrightarrow a.\overrightarrow d \end{vmatrix}$
$ = (\overrightarrow a.\overrightarrow c)(\overrightarrow b.\overrightarrow d)-(\overrightarrow b.\overrightarrow c)(\overrightarrow a.\overrightarrow d)+(\overrightarrow b.\overrightarrow a)(\overrightarrow c.\overrightarrow d)$
$ -(\overrightarrow c.\overrightarrow a)(\overrightarrow b.\overrightarrow d)+(\overrightarrow c.\overrightarrow b)(\overrightarrow a.\overrightarrow d)-(\overrightarrow a.\overrightarrow b)(\overrightarrow c.\overrightarrow d)$
= 0 = RHS

 

answered Jun 9, 2013 by thanvigandhi_1
edited Jun 23, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...