logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Find the adjoint of the matrix: \[ \begin{bmatrix} 1&2 \\ 3&4 \end{bmatrix} \]

$\begin{array}{1 1} \begin{bmatrix}4 & -2\\-3& 1\end{bmatrix} \\ \begin{bmatrix}4 & 2\\-3& 1\end{bmatrix} \\ \begin{bmatrix}4 & -2\\3& 1\end{bmatrix} \\ \begin{bmatrix}4 & -2\\-3& -1\end{bmatrix}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)A square matrix is said to be singular if |A|$\neq$ 0.
  • (ii)The adjoint of a square matrix is defined as the transpose of the matrix $[A_{ij}]_{n\times n}$.where $A_{ij}$ is the cofactor of the element $a_{ij}.$Adjoint of the matrix is denoted by adj A.
We know $A_{ij}=(-1)^{i+j}M_{ij}$
Here $M_{11}=4$
$M_{12}=3$
$M_{21}=2$
$M_{22}=1$
$A_{11}=(-1)^{1+1}\times 4=4$
$A_{12}=(-1)^{1+2}\times 3=-3$
$A_{21}=(-1)^{2+1}\times 2=-2$
$A_{11}=(-1)^{2+2}\times 1=1$
Therefore adj A=$\begin{bmatrix}A_{11} & A_{21}\\A_{12} & A_{22}\end{bmatrix}=\begin{bmatrix}4 & -2\\-3& 1\end{bmatrix}$
Therefore adj A=$\begin{bmatrix}4 & -2\\-3& 1\end{bmatrix}$
answered Mar 6, 2013 by vijayalakshmi_ramakrishnans
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...