logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

A vector $\overrightarrow{r}$ has length $35\sqrt{2}$ and direction ratios $(3 , 4 , 5 ),$ Find the direction consines and components of $\overrightarrow{r}$.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The d.c.s of a vector with d.r.s $(a,b,c)$ are $\large\frac{a}{\sqrt{a^2+b^2+c^2}}, \large\frac{b}{\sqrt{a^2+b^2+c^2}}, \large\frac{c}{\sqrt{a^2+b^2+c^2}}$
The d.c.s of the vector are $ \large\frac{3}{\sqrt{9+16+25}},\large\frac{4}{\sqrt{9+16+25}},\large\frac{5}{\sqrt{9+16+25}}$
$ = \large\frac{3}{\sqrt{50}},\large\frac{3}{\sqrt{50}},\large\frac{5}{\sqrt{50}}= \large\frac{3}{5\sqrt 2}, \large\frac{4}{5\sqrt 2}\large\frac{5}{5\sqrt 2}$
The required vector is of length $ 35\sqrt 2$
$ \therefore \overrightarrow r = 35\sqrt 2 \bigg( \large\frac{3}{5\sqrt 2} \overrightarrow i + \large\frac{4}{5\sqrt 2} \overrightarrow j + \large\frac{5}{5\sqrt 2} \overrightarrow k \bigg)$
$ = 7(3\overrightarrow i + 4 \overrightarrow j + 5\overrightarrow k)$
answered Jun 11, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...