logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Show that the lines $\large \frac{x-1}{1}=\frac{y+1}{-1}=\frac{z}{3}$ and $\large\frac{x-2}{1}=\frac{y-1}{2}=\frac{-z-1}{1}$ intersect and find their point of intersection.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The lines $ \overrightarrow r=\overrightarrow a_1+t\overrightarrow u, \: \overrightarrow r=\overrightarrow a_2+s\overrightarrow u$ intersect if $ [(\overrightarrow a_2-\overrightarrow a_1)\overrightarrow u\: \overrightarrow v]=0$
Step 1
$ \large\frac{x-1}{1} = \large\frac{y+1}{-1} = \large\frac{z}{3} $ (i)
$ \large\frac{x-2}{1} = \large\frac{y-1}{2} = \large\frac{-z-1}{1} $ (ii)
(ii) can be rewritten as $ \large\frac{x-2}{1} = \large\frac{y-1}{2} = \large\frac{z+1}{-1}$
(i) passes through $(1, -1, 0) [ \overrightarrow a_1=\overrightarrow i-\overrightarrow j]$ and is parallel to $ \overrightarrow u=\overrightarrow i-\overrightarrow j+3\overrightarrow k$
(ii) passes through $(2, 1, -1) [a_2=2\overrightarrow i+\overrightarrow j-\overrightarrow k]$ and is parallel to $ \overrightarrow v=\overrightarrow i+2\overrightarrow j-\overrightarrow k$
Step 2
$ \overrightarrow a_2-\overrightarrow a_1 = \overrightarrow i+2\overrightarrow j-\overrightarrow k$
Consider $ [ (\overrightarrow a_2-\overrightarrow a_1)\: \: \overrightarrow u\: \overrightarrow v] = \begin{vmatrix} 1 & 2 & -1 \\ 1 & -1 & 3 \\ 1 & 2 & -1 \end{vmatrix} = 1(1-6)-2(-1-3)-1(2+1)$
$ = -5+8-3=0$
$ [(\overrightarrow a_2-\overrightarrow a_1)\:\: \overrightarrow u\: \overrightarrow v]=0 \Rightarrow$ the lines intersect.
To find the point of intersection, let $ \large\frac{x-1}{1}=\large\frac{y+1}{-1}=\large\frac{z}{3}=\lambda$ at the point of intersection.
$ \Rightarrow x = \lambda+1, \: y=-\lambda-1, \: z=3\lambda$
$ \therefore ( \lambda+1, -\lambda-1, 3\lambda)$ lies on (ii). Subset in (ii).
$ \large\frac{\lambda+1-2}{1} = \large\frac{-\lambda-1-1}{2} = \large\frac{3\lambda+1}{-1}$
$ \lambda-1=\large\frac{-\lambda-2}{2}\Rightarrow 2\lambda-2=-\lambda-2\: or\: \lambda=0$
$ \therefore $ the point of intersection is $ (1, -1, 0)$

 

answered Jun 12, 2013 by thanvigandhi_1
edited Jun 24, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...