logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Vector Algebra
0 votes

Find the distance from the origin to the plane $\overrightarrow{r}=(\overrightarrow{2i}+\overrightarrow{j}+\overrightarrow{5j})=7$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Equation of the plane whose perpendicular distance from the origin is $P$ and $ \overrightarrow n$ is the unit normal vector to the plane from the origin. $ \overrightarrow r.\overrightarrow n=p$ (vector equation) $ lx+my+nz=p$ where $ \overrightarrow n=l\overrightarrow i+m\overrightarrow j+n\overrightarrow k$ If $\overrightarrow n = a\overrightarrow i+b\overrightarrow j+c\overrightarrow k$ is not the unit normal vector, then the equation is of the form $\overrightarrow r.\overrightarrow n=q$ where $ p=\large\frac{q}{|\overrightarrow n|}$ The cartesian equation is $ax+by+cz=q$
Step 1
The equation of the plane $ \overrightarrow r.(2\overrightarrow i-\overrightarrow j+5\overrightarrow k)=7 $ is of the form $ \overrightarrow r.\overrightarrow n=q$
$ \overrightarrow n = 2\overrightarrow i - \overrightarrow j + 5 \overrightarrow k\: \: q=7$
Step 2
The perpendicular distance from the origin to the plane is $ p=\large\frac{|q|}{|\overrightarrow n |}=\large\frac{7}{\sqrt{4+1+25}}=\large\frac{7}{\sqrt{30}} $ units.

 

answered Jun 17, 2013 by thanvigandhi_1
edited Jun 25, 2013 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...