Ask Questions, Get Answers

Home  >>  TN XII Math  >>  Vector Algebra

Find the vector equation of a sphere with centre having position vector $\overrightarrow{2i}-\overrightarrow{j}+\overrightarrow{3k}$ and radius $4$ units. Also find the equation in cartesian form.

1 Answer

  • Vector equation of a sphere with centre $ \overrightarrow c$ and radius $a$ is $|\overrightarrow r-\overrightarrow c|=a$ When the centre is at the origin, the vector equation is $|\overrightarrow r|=a$ Cartesian equation is $ (x-c_1)^2+(y-c_2)^2+(z-c_3)^2=a^2$ where $(c_1, c_2, c_3 )$ is the centre.
Centre of the sphere has $ pv \: \overrightarrow c=2\overrightarrow i-\overrightarrow j+3\overrightarrow k$ radius = 4 units.
Vector equation : $ |\overrightarrow r-\overrightarrow c|=4$
$ |\overrightarrow r-(2\overrightarrow i-\overrightarrow j+3\overrightarrow k)|=4$
Cartesian equation : $(x-2)^2+(y+1)^2+(z-3)^2=16$
$ x^2+y^2+z^2-4x+2y-6z=16-4-1-9$
$ x^2+y^2+z^2-4x+2y-6z-2=0$
answered Jun 18, 2013 by thanvigandhi_1

Related questions