Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Show that the general solution of the differential equation\(\large\frac{dy}{dx}+\large\frac{y^2+y+1}{x^2+x+1}=0\) is given by \((x+y+1)\;=\;A(1-x-y-2xy)\), where A is parameter

Can you answer this question?

1 Answer

0 votes
  • A first order degree differential equation is of the form $\large\frac{dy}{dx} = $$F(x,y)$, and if F(x,y) can be expressed as a product of g(x).h(y), where g(x) is a function of x and h(y) is a function of y, then it is said to be of variables seperable type.
Step 1:
Given :$\large\frac{dy}{dx}+\frac{y^2+y+1}{x^2+x+1}$$=0$
Using the information in the tool box we identify the equation as variables seperable type.
Seperating the variables we get,
Step 2:
Integrating on both sides
$\int \large\frac{dy}{y^2+y+1}=\int\large\frac{-dx}{x^2+x+1}$
$\int \large\frac{dy}{(y+\large\frac{1}{2})^2+(\sqrt{\large\frac{3}{2}})^2}=-\int \large\frac{dx}{(x+\large\frac{1}{2})^2+(\sqrt{\large\frac{3}{2}})^2}$
$\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2y+1)}{\sqrt 3}=-\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2x+1)}{\sqrt 3}$$+C$
$\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2y+1)}{\sqrt 3}+\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2x+1)}{\sqrt 3}$$=C$
Step 3:
Apply the formula $\tan^{-1}x +\ tan^{-1}y = tan^{-1}\large\frac{(x+y)}{1-xy} $
$\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2y+1)}{\sqrt 3}+\large\frac{2}{\sqrt 3}$$\tan^{-1}\large\frac{(2x+1)}{\sqrt 3}=\large\frac{2}{\sqrt 3}\tan^{-1}\large\frac{(2x+2y+1)}{\sqrt 3}\times \large\frac{3}{(4-4xy+2x+2y)}=C$
Step 4:
On simplifying we get,
Let $\tan\sqrt {\large\frac{3C}{2}}=$$A$
Hence proved.
answered Jul 30, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App