Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the hyperbola if centre: $(0 , 0 )$ length of the semi-transverse axis is $5; e=\large\frac{7}{5}$ and the conjugate axis is along x-axis.

Can you answer this question?

1 Answer

0 votes
  • Standard forms of equation of the hyperbola with transverse axis $2a$,conjugate axis $2t$ with the negative sign associated with $b$ and $e=\sqrt{1+\large\frac{b^2}{a^2}},b=a\sqrt{e^2-1}$
  • $\large\frac{y^2}{a^2}-\frac{x^2}{b^2}$$=1$
  • http://clay6.com/mpaimg/toolbox10.jpg
  • Foci $(0,\pm ae)$,centre $(0,0)$,vertices $(0,\pm a)$.
  • Transverse axis $y$-axis ($x=0$)
  • Conjugate axis $x$-axis ($y=0$)
  • End points of latus rectum $(\pm\large\frac{b^2}{a},$$ae),(\pm\large\frac{b^2}{a},$$-ae)$
  • Length of LR :$\large\frac{2b^2}{a}$
  • Directrices $y=\pm\large\frac{a}{e}$
Step 1:
Equation is of the form $\large\frac{y^2}{a^2}-\frac{x^2}{b^2}$$=1$
$\Rightarrow 25\big(\large\frac{49}{25}$$-1\bigg)$$=24$
Step 2:
Therefore the equation is $\large\frac{y^2}{25}-\frac{x^2}{24}$$=1$
answered Jun 18, 2013 by sreemathi.v
edited Jun 19, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App