logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Find the equation of the hyperbola if centre: $(0 , 0 )$ length of the semi-transverse axis is $5; e=\large\frac{7}{5}$ and the conjugate axis is along x-axis.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Standard forms of equation of the hyperbola with transverse axis $2a$,conjugate axis $2t$ with the negative sign associated with $b$ and $e=\sqrt{1+\large\frac{b^2}{a^2}},b=a\sqrt{e^2-1}$
  • $\large\frac{y^2}{a^2}-\frac{x^2}{b^2}$$=1$
  • http://clay6.com/mpaimg/toolbox10.jpg
  • Foci $(0,\pm ae)$,centre $(0,0)$,vertices $(0,\pm a)$.
  • Transverse axis $y$-axis ($x=0$)
  • Conjugate axis $x$-axis ($y=0$)
  • End points of latus rectum $(\pm\large\frac{b^2}{a},$$ae),(\pm\large\frac{b^2}{a},$$-ae)$
  • Length of LR :$\large\frac{2b^2}{a}$
  • Directrices $y=\pm\large\frac{a}{e}$
Step 1:
$a=5,e=\large\frac{7}{5}$
Equation is of the form $\large\frac{y^2}{a^2}-\frac{x^2}{b^2}$$=1$
$b^2=a^2(e^2-1)$
$\Rightarrow 25\big(\large\frac{49}{25}$$-1\bigg)$$=24$
$b^2=24$
Step 2:
Therefore the equation is $\large\frac{y^2}{25}-\frac{x^2}{24}$$=1$
answered Jun 18, 2013 by sreemathi.v
edited Jun 19, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...