Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the hyperbola if centre : $(1 , -2 )$ length of the transverse axis is $8; e=\large\frac{5}{4}$ and the transverse axis is parallel to x- axis.

Can you answer this question?

1 Answer

0 votes
  • General form of standard hyperbola with centre $C(h,k)$,transverse axis $2a$,conjugate axis $2b$,$(b^2-ve)$ and with axes parallel to the coordinate axes.
  • (i) $\large\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}$$=1$
  • Transverse axis $y-k=0$,conjugate axis $x-h=0$.
  • (ii) $\large\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}$$=1$
  • Transverse axis $x-h=0$,conjugate axis $y-k=0$.
Step 1:
Transverse axis is parallel to $x$-axis.
Therefore transverse axis is $y=-2$
$\Rightarrow 16\big(\large\frac{25}{16}$$-1)=9$
Step 2:
Equation is of the form $\large\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}$$=1$
$\Rightarrow \large\frac{(x-1)^2}{16}-\frac{(y-(-2))^2}{9}$$=1$
The equation is $\large\frac{(x-1)^2}{16}-\frac{(y+2)^2}{9}$$=1$
answered Jun 19, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App