Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Show that the locus of a point which moves so that the difference of its distance from the points $(5 , 0 ) $ and $(-5 , 0 )$is $8 $ is $9x^{2}-16y^{2}=144$

Can you answer this question?

1 Answer

0 votes
  • If a point moves so that the difference between its distances from the fixed points is a constant,then the path traced by the point is a hyperbola with the length of the transverse axis equal to the constant difference and the two points as foci.
Step 1:
The point $P(x,y)$ moves such that the difference of its distances between the points $F(5,0)$ and $F'(-5,0)$ is $8$.
Therefore it traces a hyperbola with length of the transverse axis $2a=8\Rightarrow a=4$
The foci $FF'$ centre of the hyperbola is the midpoint of $FF'$ (i.e)$(0,0)$
Step 2:
The transverse axis contains the points $F$ and $F'$.Therefore it is the $x$-axis.
Therefore $2ae=10$
$\Rightarrow ae=5$
Step 3:
The semi conjugate axes ' b' is given by
$b=a\sqrt{e^2-1}=4\sqrt{\large\frac{25}{16}-\normalsize 1}$
Step 4:
The equation of the hyperbola is $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$
answered Jun 19, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App