Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  ISC XII Math  >>  Model Papers
0 votes

Evaluate $\large \int \frac{2\sin 2 x -\cos x }{6-\cos^2x -4\sin x }$$dx$.

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com

Can you answer this question?

1 Answer

0 votes
  • $I=\int f(x) dx$
  • Put $x=g(t)$ then $dx=g'(t)$
  • Therefore $I=\int f(g(t))g'(t)dt$
  • $\int \large\frac{dx}{x^+a^2}=\frac{1}{a}$$\tan^{-1}\big(\Large\frac{x}{a}\big)$
  • $\int \large\frac{dx}{x}$$=\log \mid x\mid+c$
Step 1:
Let $I = \int \large\frac{ (2\sin2x - \cos x)}{(6-\cos^2x-4\sin x)}$$dx$
We know that $\sin 2x=2\sin x\cos x$
$\qquad=\int\large\frac {[4\sin x\cos x - \cos x] dx}{6-1+\sin^2x-4\sin x}$
$\qquad=\int \large\frac{ [\cos x(4\sin x-1)]dx}{[\sin^2x-4\sin x+5]}$
Step 2:
Put $\sin x = t$ then $\cos xdx = dt$
substituting this we get,
$\qquad=\int \large\frac{ [4t-1]dt}{t^2-4t+5}$
$\qquad=\int \large\frac{[4t-8+7]dt}{t^2-4t+5}$
$\qquad=\int 2 \large\frac{[2t-4]dt}{[t^2-4t+5]} +\frac{7dt}{[t^2-4t+5]}$
Step 3:
Put $t^2-4t+5= y$, then $[2t-4]dt = dy$
Therefore $\int 2 \large\frac{ dy}{y }$$+7 \int \large\frac{dt}{(t-2)^2+1}$
Step 4:
On integrating we get,
$2 \log |y| + 7 \tan^{-1}(t-2)$$+C$
Step 5:
Substituting for $y$ and $t$ we get
$2 \log|\sin^2x-4\sin x+5| + 7 \tan^{-1}(\sin x-2)$$+c$
answered Dec 22, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App