Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Solve system of linear equations, using matrix method:\[\] \[5x+2y=4\] \[7x+3y = 5\]

$\begin{array}{1 1} X=-2,Y=-3 \\ X=-2,Y=-3 \\ X=-2,Y=3 \\ X=2,Y=3\end{array} $

Can you answer this question?

1 Answer

0 votes
  • A matrix is said to be singular if |A|= 0.
  • A matrix is said to be invertible if |A|$\neq 0$.
  • If A is a non-singular matrix,AX=B,then $X=A^{-1}B.$
  • Using this we can solve the system of equation which has unique solution.
This can be written in the form AX=B.
$\begin{bmatrix}5 & 2\\7 & 3\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}4\\5\end{bmatrix}$
Where $A=\begin{bmatrix}5 & 2\\7 & 3\end{bmatrix}\;X=\begin{bmatrix}x\\y\end{bmatrix}\;B=\begin{bmatrix}4\\5\end{bmatrix}$
Let us now see if A is singular or non-singular,to obtain the value of determinant |A|,
|A|=$[5\times 3-2\times 7]$
$\;\;\;=15-14=1\neq 0$
Hence it is non-singular .Hence inverse exists,Now let us obtain $A^{-1}$
$A^{-1}=\frac{1}{|A|}(adj A)$
To calculate (adj A) let us interchange the elements of $a_{11}$ and $a_{22}$ and interchange the symbols of elements $a_{12}$ and $a_{21}$.
(adj A)=$\begin{bmatrix}3 & -2\\-7 & 5\end{bmatrix}$
We know |A|=1.
Therefore $A^{-1}=\frac{1}{1}\begin{bmatrix}3 & -2\\-7 & 5\end{bmatrix}$
$\Rightarrow A^{-1}=\begin{bmatrix}3 & -2\\-7 & 5\end{bmatrix}$
x=$A^{-1}B=\begin{bmatrix}3 & -2\\-7 & 5\end{bmatrix}\begin{bmatrix}4\\5\end{bmatrix}$
Matrix multiplication can be obtained by multiplying the rows of A with the column of B.
$\Rightarrow x=2,y=-3$


answered Feb 27, 2013 by sreemathi.v
edited Feb 27, 2013 by vijayalakshmi_ramakrishnans

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App