Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the tangent and normal to the hyperbola $\large\frac{x^{2}}{9}-\frac{y^{2}}{12}=$$1$ at $\theta=\large\frac{\pi}{6}$

Can you answer this question?

1 Answer

0 votes
  • The equation of tangent at $\theta$ is given by $\large\frac{x\sec \theta}{a}-\large\frac{y\tan \theta}{b}$$=1$
  • The equation of normal at $\theta$ is given by $\large\frac{ax}{\sec \theta}+\large\frac{by}{\tan \theta}=$$a^2+b^2$
Step 1:
$\Rightarrow a^2=9$ and $b^2=12$
$\Rightarrow a=3,b=2\sqrt 3$
The parametric equations are $x=a\sec\theta,y=b\tan\theta$
(i.e) $x=3\sec\theta,y=2\sqrt 3\tan\theta$
Step 2:
The tangent at $\theta$ is $\large\frac{x\sec \theta}{a}-\large\frac{y\tan \theta}{b}$$=1$
$a=3,b=2\sqrt 3,\theta=\large\frac{\pi}{6}$
$\large\frac{x\sec \Large\frac{\pi}{6}}{3}-\large\frac{y\tan \Large\frac{\pi}{6}}{2\sqrt 3}$$=1$
We know that $\sec\large\frac{\pi}{6}=\large\frac{2}{\sqrt 3}$ and $\tan\large\frac{\pi}{6}=\large\frac{1}{\sqrt 3}$
$\large\frac{x.2}{3\sqrt 3}-\large\frac{y.\Large\frac{1}{\sqrt 3}}{2\sqrt 3}$$=1$
$\large\frac{2x}{3\sqrt 3}-\large\frac{y}{6}$$=1$
$12x-3\sqrt 3y=18\sqrt 3$
The above equation is divided by $3$ we get,
$4x-\sqrt 3y=6\sqrt 3$
Step 3:
The normal at $\theta$ is $\large\frac{ax}{\sec \theta}+\large\frac{by}{\tan \theta}=$$a^2+b^2$
$\large\frac{3x}{\sec \Large\frac{\pi}{6}}+\large\frac{2\sqrt 3y}{\tan \Large\frac{\pi}{6}}=$$3^2+(2\sqrt 3)^2$
We know that $\sec\large\frac{\pi}{6}=\large\frac{2}{\sqrt 3}$ and $\tan\large\frac{\pi}{6}=\large\frac{1}{\sqrt 3}$
$\large\frac{3\sqrt 3x}{2}$$+6y=21$
$3\sqrt 3x+12y=42$
The above equation is divided by $3$ we get,
$\sqrt 3x+4y=14$
Step 4:
Equation of tangent : $4x-\sqrt 3y=6\sqrt 3$
Equation of normal : $\sqrt 3x+4y=14$
answered Jun 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App