Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the tangent to the parabola $y^{2}=16x,$ perpendicular to the line $3x-y+8=0$

Can you answer this question?

1 Answer

0 votes
  • Equation of any tangent to
  • $\quad(i)$ The parabola $y^2=4ax$ is of the form $y=mx+\large\frac{a}{m}$
  • $\quad(ii)$ The ellipse $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$ is of the form $y=mx\pm\sqrt{a^2m^2+b^2}$
  • $\quad(iii)$ The hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ is of the form $y=mx\pm\sqrt{a^2m^2-b^2}$
Step 1:
Tangent to $y^2=16x$ perpendicular to $3x-y+8=0$
Compare with $y^2=4ax,4a=16\Rightarrow a=4$
Any tangent to $y^2=4ax$ is $y=mx+\large\frac{a}{m}$
Here $y=mx+\large\frac{4}{m}$
Step 2:
Required tangent is to $3x-y+8=0$ whose slope is $3$.
Therefore slope of the tangent =$\large\frac{-1}{3}$$=m$
The required tangent is $y=-\large\frac{1}{3}$$x+\large\frac{4}{\Large\frac{-1}{3}}$
$\Rightarrow y=\large\frac{-x}{3}$$-12$
$\Rightarrow x+3y+36=0$
answered Jun 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App