Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the two tangents that can be drawn,from the point $(2 , -3 )$ to the parabola $y^{2}=4x $

Can you answer this question?

1 Answer

0 votes
  • Equation of any tangent to
  • $\quad(i)$ The parabola $y^2=4ax$ is of the form $y=mx+\large\frac{a}{m}$
  • $\quad(ii)$ The ellipse $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$ is of the form $y=mx\pm\sqrt{a^2m^2+b^2}$
  • $\quad(iii)$ The hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ is of the form $y=mx\pm\sqrt{a^2m^2-b^2}$
Step 1:
Equations of the tangents from $(2,-3)$ to $y^2=4x$.
Compare with $y^2=4ax$,we have $4a=4\Rightarrow a=1$
Any tangent is of the form $y=mx\pm \large\frac{a}{m}$
Here $a=1$
Therefore $y=mx+\large\frac{1}{m}$
Step 2:
The tangent passes through $(2,-3)$
Therefore $-3=2m+\large\frac{1}{m}$
$m=\large\frac{-3\pm\sqrt{9-8}}{4}=\large\frac{-3\pm 1}{4}$$=-1,\large\frac{-1}{2}$
Step 3:
Using the point slope form (since the tangents pass through $(2,-3))$
When $m=-1$
When $m=\large\frac{-1}{2}$
$\Rightarrow x+2y+4=0$
Step 4:
The two tangents are : $x+y+1=0,x+2y+4=0$
answered Jun 21, 2013 by sreemathi.v
edited Jun 21, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App