Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the equation of the rectangular hyperbola which has its center at $(2 , 1 )$ one of its asymptotes $ 3x-y-5=0 $ and which passes through the point $(1 , -1 )$

Can you answer this question?

1 Answer

0 votes
  • In a rectangular hyperbola the asymptotes are at right angles $a=b$ and $e=\sqrt 2$
Step 1:
The centre of the hyperbola is $(2,1)$ and one of the asymptotes is $3x-y-5=0$.Since in an rectangular hyperbola,the asymptotes are $\perp$ to each other,the other asymptote is of the form $x+3y+k=0$.
It passes through the centre $(2,1)$
Therefore $2+3+k=0$
$\Rightarrow 5+k=0$
$\Rightarrow k=-5$
The second asymptote is $x+3y-5=0$
Step 2:
The combined equation of the asymptotes is $(3x-y-5)(x+3y-5)=0$
The equation of the rectangular hyperbola differs only in the constant term.Its equation is of the form $(3x-y-5)(x+3y-5)=k$
Step 3:
The point $(1,-1)$ lies on the rectangular hyperbola.
Therefore $(3+1-5)(1-3-5)=k$
$\Rightarrow k=7$
The equation of the hyperbola is $(3x-y-5)(x+3y-5)=7$
On simplifying we get,
answered Jun 24, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App