Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Form the differential equuations by eliminating arbitary constants given in brackets against each $y=(A+Bx)^{e^{\Large 3x}} [A , B ] $

Can you answer this question?

1 Answer

0 votes
  • If we have an equation $f(x,y,c_1,c_2,....c_n)=u$ Containing n arbitrary constant $c_1,c_2...c_n$, then by differentiating n times, we get $(n+1)$ equations in total. If we eliminate the arbitrary constants $c_1,c_2....c_n,$ we get a D.E of order n
Step 1:
$y=(A+Bx)e^{ 3x}$-----(i)
$\large\frac{dy}{dx}$$=3e^{3x} (A+Bx)+Be^{3x}$-----(ii)
=>$\large\frac{dy}{dx}$$=3y+Be^{3x} $-----(iii)
Step 2:
Now from (iii)
$\large\frac{d^2y}{dx^2}$$=3 \large\frac{dy}{dx}$$+3 Be^{3x}$
$\therefore \large\frac{d^2y}{dx^2}$$= 3 \large\frac{dy}{dx} $$+ 3 \bigg[\large\frac{dy}{dx}$$-3y\bigg]$
$\therefore \large\frac{d^2y}{dx^2} $$-6 \large\frac{dy}{dx} $$+9y=0$ is the required D.E
answered Sep 3, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App