Ask Questions, Get Answers


Form the differential equuations by eliminating arbitary constants given in brackets against each $y=(A+Bx)^{e^{\Large 3x}} [A , B ] $

1 Answer

  • If we have an equation $f(x,y,c_1,c_2,....c_n)=u$ Containing n arbitrary constant $c_1,c_2...c_n$, then by differentiating n times, we get $(n+1)$ equations in total. If we eliminate the arbitrary constants $c_1,c_2....c_n,$ we get a D.E of order n
Step 1:
$y=(A+Bx)e^{ 3x}$-----(i)
$\large\frac{dy}{dx}$$=3e^{3x} (A+Bx)+Be^{3x}$-----(ii)
=>$\large\frac{dy}{dx}$$=3y+Be^{3x} $-----(iii)
Step 2:
Now from (iii)
$\large\frac{d^2y}{dx^2}$$=3 \large\frac{dy}{dx}$$+3 Be^{3x}$
$\therefore \large\frac{d^2y}{dx^2}$$= 3 \large\frac{dy}{dx} $$+ 3 \bigg[\large\frac{dy}{dx}$$-3y\bigg]$
$\therefore \large\frac{d^2y}{dx^2} $$-6 \large\frac{dy}{dx} $$+9y=0$ is the required D.E
answered Sep 3, 2013 by meena.p

Related questions

Download clay6 mobile appDownload clay6 mobile app