Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Solve the following $\sec 2x dy -\sin 5x \sec^{2} ydx=0$

Can you answer this question?

1 Answer

0 votes
  • First order , first degree DE
  • Variable separable : Variables of a DE are rearranged to separate them, ie
  • $f_1(x)g_2(y)dx+f_2(x)g_1(y)dy=0$
  • Can be written as $ \large\frac{g_1 (y)}{g_2(y)}$$dy=-\large\frac{f_1(x)}{f_2(x)}$$dx$
  • The solution is therefore $\int \large\frac{g_1(y)}{g_2(y)}$$dy=-\int \large\frac{f_1(x)}{f_2(x)}$$dx+c$
Step 1:
$\sec 2x dy - \sin 5x \sec^2 y dx=0$ divided by $\sec 2x \sec^2 y$
$\large\frac{dy}{\sec^2 y}-\frac{\sin 5x}{\sec 2x}$$dx=0$
$ \cos ^2 y dy= \sin 5x \cos 2x dx $
Step 2:
$\int \cos^2 y dy =\int \sin 5x \cos 2x dx +c_1$
$\int \large\frac{1+\cos 2y}{2}dy=\large\frac{1}{2}$$ \int (\sin \large\frac{7x}{2}$$+ \sin 3x)dx+c_1$
$\large\frac{y}{2}+\frac{1}{4} $$ \sin 2y = -\large\frac{1}{2} \times \frac{1}{7} $$\cos 7x-\large\frac{1}{2} \times \large\frac{1}{3} $$\cos 3x +c_1$
Multiply by two and rearrange
$y+ \large\frac{\sin 2y}{2} + \frac{\cos 7x}{7}-\frac{\cos 3x}{3}$$+c$


answered Sep 4, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App