Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

\[ \text{Prove that the determinant } \begin{vmatrix} x&sin\theta&cos\theta \\ -sin\theta&-x&1\\ cos\theta&1&x \end{vmatrix} \text{ is independent of } \theta \]

Can you answer this question?

1 Answer

0 votes
  • A determinant can be expanded along the rows or any of the column with their corresponding cofactors,to find its value.
We have to prove that the given determinant is independent of $\theta$.That is,it has only algebraic terms.
Given $\bigtriangleup=\begin{vmatrix} x&sin\theta&cos\theta \\ -sin\theta&-x&1\\ cos\theta&1&x \end{vmatrix}$
Now let us expand along $R_1$
$x(-x\times x-1\times 1)-sin\theta(\sin\theta\times x-1\times cos\theta)+cos\theta(-sin\theta\times 1-cos\theta\times -x)$
On expanding we get,
On simplifying we get,
=$-x^3-x+xsin^2\theta+sin\theta cos\theta-sin\theta cos\theta-x cos^2\theta$
But we know $(sin^2\theta+cos^2\theta)=1$
Therefore $\bigtriangleup=-x^3-x+x$.
Therefore $\bigtriangleup=-x^3$.
Which shows that $\bigtriangleup$ is only algebraic and is independent of $\theta$.
answered Mar 1, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App