Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Solve the following. $(y - x)\large\frac{dy}{dx}$=$a^{2}$

Can you answer this question?

1 Answer

0 votes
  • Linear Differential equation.
  • This is of the form $\large\frac{dy}{dx}$$+Py=Q$ where P and Q are functions of x only.
  • The integrating factor $I= e^{\int \large pfd}$ and the $G.S$ is$ ye^{\large pdx}=\int Q e^{\large pdx} dx+c$
Step 1:
$(y-x) \large\frac{dy}{dx}$$=a^2$
=>$a^2 \large\frac{dx}{dy}$$=y-x$
Step 2:
$a^2\large\frac{dx}{dy}$$+x=y$ divided by $a^2$
This is linear in $\large\frac{dx}{dy}$
$P(y)=\frac{1}{a^2}$$, 8 (y)=\frac{y}{a^2}$
$e^{\large \int pdy}=e^{\int \large\frac{1}{a^2} dy}$
Step 3:
The solution is $xe^{\large\frac{y}{a^2}}=\int \large\frac{y}{a^2} e^{\large\frac{y}{a^2}}$$dy+c$
$xe^{\large\frac{y}{a^2}}=\large \frac{1}{a^2}$$\bigg [y. a^2e^{\large\frac{y}{a^2}}-a^4e^{\large\frac{y}{a^2}}\bigg]+c$
$xe^{\large\frac{y}{a^2}}=y \;e^{\large\frac{y}{a^2}}-a^2e^{\large\frac{y}{a^2}}+c$
answered Sep 6, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App