logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Evaluate $\begin{vmatrix} 1 & x & y\\ 1 & x+y & y\\ 1 & x & x+y \end{vmatrix}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If each element of a row(or a column) of a determinant is multiplied by a constant k,then its value gets multiplied by k.
  • By this property we can take out any common factor from any one row or any column of a given determinant.
  • Elementary transformations can be done by
  • 1. Interchanging any two rows or columns.
  • 2. Mutiplication of the elements of any row or column by a non-zero number
  • 3. The addition of any row or column , the corresponding elemnets of any other row or column multiplied by any non zero number.
Let $\Delta = \begin{vmatrix} 1 & x & y\\1 & x+y & y\\1& x& x+y\end{vmatrix}$
Apply R2 → R2 - R1 and R3 → R3 - R1
$\Delta=\begin{vmatrix}1 & x & y\\0 & y & -x\\0 & 0 & x\end{vmatrix}$
Now expanding $C_1$ we have
$\Delta=1(yx+0)-0+0=xy$
Hence $\Delta=xy$.
answered Mar 1, 2013 by balaji.thirumalai
edited Mar 2, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...