Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Solve the following differential equation; $(D^{2}+2D+3)$$y=\sin$$2x$

Can you answer this question?

1 Answer

0 votes
  • A general second-order homogeneous equation is of the form $a\large\frac{d^2y}{dx^2}$$+b\large\frac{dy}{dx}$$+cy=X$
  • Where $X$ is a function of $x$
  • The solution is obtained in two parts.
  • The first part is the complementary function CF
  • This is obtained by solving the equation $am^2+bm+c=0$.The second part is called the particular integral or PI
  • The GS is $y=CF+PI$
  • Let $m_1,m_2$ be the roots of the CE
  • Case 1: $m_1,m_2$ are real numbers and distinct
  • $CF=Ae^{m_1x}+Be^{m_2x}$
  • Case 2: $m_1,m_2$ are complex (i.e)$m_1=\alpha+i\beta$ and $m_2=\alpha-i\beta$
  • Then $CF=e^{\alpha x}[A\cos\beta x+B\sin \beta x]$
  • Case 3: $m_1,m_2$ are real and equal say $m_1$
  • PI :When $x$ is of the form $\cos\alpha x$ or $\sin\alpha x$
  • Case 1 : When $f$ is a function of $D^2$
  • PI =$\large\frac{1}{f(D)} $$\cos\alpha x(or \sin\alpha x)=\large\frac{1}{\phi(D^2)}$$\cos\alpha x=\large\frac{1}{\phi(-\alpha ^2)}$$\cos\alpha x$
  • Case 2:When $f=\phi(D,D^2)$
  • PI is obtained by replacing $D^2$ by $-\alpha^2$
  • $PI=\large\frac{1}{-\alpha ^2+bD+1}$$\cos\alpha x(or \sin\alpha x)$
  • $\;\;\;=\large\frac{1}{bD+P}$$\cos\alpha x(or \sin\alpha x)$
  • $\;\;\;=\large\frac{bD-P}{(bD+P)(bD-P)}$$\cos\alpha x(or \sin\alpha x)$
  • $\;\;\;=\large\frac{bD-P}{(bD^2-P^2)}$$\cos\alpha x(or \sin\alpha x)$
  • $\;\;\;=\large\frac{bD-P}{(b(-\alpha^2)-P^2)}$$\cos\alpha x(or \sin\alpha x)$
  • The denominator is a constant and the numerator represents a differentiation
  • Case 3: If $\phi(-\alpha^2)=0$ then
  • PI=$\large\frac{1}{\phi(D^2)}$$\cos \alpha x=\large\frac{1}{D^2+\alpha^2}$$\cos\alpha x$
  • $\Rightarrow$ R.P of $\large\frac{1}{(D+i\alpha)(D-i\alpha)}$$e^{i\alpha x}$
  • $\Rightarrow$ R.P of $\large\frac{1}{\theta(i\alpha)}$$e^{i\alpha x}$
  • $\Rightarrow$ $\large\frac{-x}{2\alpha}$$(-\sin \alpha x)=\large\frac{x\sin\alpha x}{2\alpha}$
  • or $PI=\large\frac{1}{\phi(D^2)}$$\sin\alpha x$=I.P of $\large\frac{1}{(D+i\alpha)(D-i\alpha)}$$e^{i\alpha x}$
  • PI=$\large\frac{-x}{2\alpha}$$\cos\alpha x$
Step 1:
CE :$m^2+2m+3=0$
$m=\large\frac{-2\pm \sqrt{4-12}}{2}$
$\Rightarrow \large\frac{-2\pm 2\sqrt 2i}{2}$
$\Rightarrow -1\pm \sqrt 2i$
$\alpha =-1,\beta=\sqrt 2$
CF : $e^{-x}[A\cos \sqrt 2x+B\sin\sqrt 2x]$
Step 2:
PI =$\large\frac{1}{D^2+2D+3}$$\sin 2x=\frac{1}{-4+2D+3}$$\sin 2x$
$\Rightarrow \large\frac{1}{2D-1}\frac{(2D+1)}{(2D+1)}$$\sin 2x$
$\Rightarrow \large\frac{2D+1}{4D^2-1}$$\sin 2x$
$\Rightarrow \large\frac{(2D+1)}{(-16-1)}$$\sin 2x$
$\Rightarrow \large\frac{-1}{17}$$(2D+1)\sin 2x$
$\Rightarrow \large\frac{-1}{17}$$[4\cos 2x+\sin 2x]$
Step 3:
GS : $y=e^{-x}[A\cos\sqrt 5x+B\sin \sqrt 5x]-\large\frac{-1}{17}$$[4\cos 2x+\sin 2x]$
answered Sep 6, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App