Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Determinants
0 votes

Using properties of determinants, prove that: $\begin{vmatrix} 1&1+p&1+p+q\\ 2&3+2p&4+3p+2q\\ 3&6+3p&10+6p+3q \end{vmatrix}= 1.$

Can you answer this question?

1 Answer

0 votes
  • If each element of a row(or a column) of a determinant is multiplied by a constant k,then its value gets multiplied by k.
  • By this property we can take out any common factor from any one row or any column of a given determinant.
Let $\Delta = \begin{vmatrix} 1 & 1+p& 1+p+q\\2 & 3+2p & 4+3p+2q\\3&6+3p&10+6p+3q\end{vmatrix}$
Apply $R_2\rightarrow R_2-2R_1$ and $R_1\rightarrow R_3-3R_1$ we have,
$\Delta = \begin{vmatrix} 1 & 1+p& 1+p+q\\0 & 1 & 2+p\\0&3&7+3p\end{vmatrix}$
Apply $R_3\rightarrow R_3-3R_2$ we get,
$\Delta = \begin{vmatrix} 1 & 1+p& 1+p+q\\0 & 1 & 2+p\\0&0&1\end{vmatrix}$
Now expanding along $C_1$ we get,
Hence proved.


answered Mar 3, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App