Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

Prove that $\left ( 1+ \mathit{i\sqrt{3}} \right )^{\mathit{n}} + \left ( 1- \mathit{i\sqrt{3}} \right )^{\mathit{n}} = 2^{n+1} \cos \; \large\frac{n\pi}{3}$

m, n N.

This is the second part of the multi-part question Q4.

Can you answer this question?

1 Answer

0 votes
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
Let $1+\sqrt 3i=r(\cos \theta+i\sin \theta)$
Equating the real and imaginary parts separately
$r\sin\theta=\sqrt 3$
Squaring and adding we get
Step 2:
Also $\alpha=\tan^{-1}\sqrt 3=\large\frac{\pi}{3}$
Since $1+\sqrt 3i$ is represented by a point in quadrant 1.
Therefore $1+\sqrt 3i=2(\cos \large\frac{\pi}{3}$$+i\sin\large\frac{\pi}{3})$
$1-\sqrt 3i=1+\sqrt 3i$
$\qquad\;\;\;\;\;=2(\cos \large\frac{\pi}{3}$$-i\sin\large\frac{\pi}{3})$
Step 3:
Now LHS=$(1+i\sqrt 3)^n+(1-i\sqrt 3)^n$
Hence proved.
answered Jun 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App