Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

Prove that $\left ( 1+\mathit{i} \right )^{4n}$ and $\left ( 1+\mathit{i} \right )^{4n+2}$ are real and purely imaginary respectively.

m, n N This is the fourth part of the multi-part question Q4.
Can you answer this question?

1 Answer

0 votes
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
Let $1+i=r(\cos \theta+i\sin\theta)$
Equating the real imaginary parts separately
Squaring and adding we get
$\Rightarrow r=\sqrt 2$
Step 2:
Now $\alpha=\tan^{-1}1=\large\frac{\pi}{4}$
Since $1+i$ corresponds to a point in quadrant 1.
Therefore $1+i=\sqrt 2(\cos\large\frac{\pi}{4}$$+i\sin\large\frac{\pi}{4})$
Step 3:
$\qquad\;\;\quad=2^{2n}(\cos n\pi+i\sin n\pi)$
Now $\sin n\pi=0$ for $n\in N$
Therefore $(1+i)^{4n}$ is purely real.
Step 4:
Now $\cos(n\pi+\large\frac{\pi}{2})$$=0$ for $n\in N$
Therefore $(1+i)^{4n+2}$ is purely imaginary.
answered Jun 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App