Step 1:
Equation of a plane with intercepts $a,b,c$ is $\large\frac{x}{a}+\large\frac{y}{b}+\large\frac{z}{c}=$$1$
The perpendicular distance of a plane is $p=\large\frac{Ax_1+By_1+cz_1+d}{\sqrt{A^2+B^2+C^2}}$
From the origin $(x_1,y_1,z_1)\Rightarrow (0,0,0)$
We can written as
The perpendicular distance of a plane from the origin is $p=\large\frac{d}{\sqrt{A^2+B^2+C^2}}$
$\Rightarrow p=\large\frac{1}{\sqrt{\big(\Large\frac{1}{a}\big)^2+\big(\Large\frac{1}{b}\big)^2+\big(\Large\frac{1}{c}\big)^2}}$
$\Rightarrow p=\large\frac{1}{\sqrt{\big(\Large\frac{1}{a^2}\big)+\big(\Large\frac{1}{b^2}\big)+\big(\Large\frac{1}{c^2}\big)}}$
Step 2:
Squaring on both sides we get
$p^2=\large\frac{1}{\big(\Large\frac{1}{a^2}\big)+\big(\Large\frac{1}{b^2}\big)+\big(\Large\frac{1}{c^2}\big)}$
$\Rightarrow p^2=\large\frac{a^2b^2c^2}{b^2c^2+a^2c^2+a^2b^2}$
Step 3:
Reciprocating on both sides and simplifying we get
$\large\frac{1}{p^2}=\large\frac{b^2c^2}{a^2b^2c^2}+\large\frac{a^2c^2}{a^2b^2c^2}+\large\frac{a^2b^2}{a^2b^2c^2}$
$\large\frac{1}{p^2}=\large\frac{1}{a^2}+\large\frac{1}{b^2}+\large\frac{1}{c^2}$
$\large\frac{1}{a^2}+\large\frac{1}{b^2}+\large\frac{1}{c^2}=\large\frac{1}{p^2}$
Hence proved.