Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If $\alpha $ and $\beta$ are the roots of the equation $ x^{2}-2px+\left ( p^{2} + q^{2}\right )=0 $ and $ tan \; \theta =\large \frac{q}{y+p} $ show that $ \large\frac{\left (y+\alpha \right )^{n}-\left ( y+\beta \right )^{n}}{\alpha -\beta }$ = $ q^{n-1}\large\frac{sin \;n\theta }{sin\;^{n}\theta }$

n N

Can you answer this question?

1 Answer

0 votes
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
$\alpha$ and $\beta$ are the roots of the equation $x^2-2px+(p^2+q^2)=0$
Solving $x=\large\frac{2p\pm\sqrt{4p^2-4(p^2+q^2)}}{2}$
$\Rightarrow \large\frac{2p\pm i2q}{2}$
$\Rightarrow p\pm iq$
Step 2:
Let $\alpha=p+iq,$ then $\beta=p-iq\Rightarrow \alpha-\beta=2qi$
We also have $\tan\theta=\large\frac{q}{y+p}$
$\Rightarrow y+p=\large\frac{q}{\tan\theta}=\large\frac{q\cos\theta}{\sin\theta}$
Step 3:
Now $\large\frac{(y+\alpha)^n-(y+\beta)^n}{\alpha-\beta}=\large\frac{(y+p+iq)^n-(y+p-iq)^n}{2qi}$
$\qquad\qquad=\large\frac{q^n}{\sin^n\theta}\large\frac{(\cos \theta+i\sin\theta)^n-(\cos\theta-i\sin\theta)^n}{2qi}$
$\qquad\qquad=\large\frac{q^n}{\sin^n\theta}\large\frac{\cos n\theta+i\sin n\theta-\cos n\theta+i\sin n\theta}{2qi}$
$\qquad\qquad=\large\frac{q^n}{2qi\sin^n\theta}$$2i\sin n\theta$
$\qquad\qquad=\large\frac{q^n}{q\sin^n\theta}$$\sin n\theta$
$\qquad\qquad=\large\frac{q^{n-1}}{\sin^n\theta}$$\sin n\theta$
Hence proved.
answered Jun 11, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App