Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If $ \alpha$ and $\beta $ are the roots of $x^{2}-2x+4=0$. Prove that $\alpha ^{n}-\beta ^{n}=i2^{n+1}sin\large\frac{n\pi }{3}$ and calculate $\alpha ^{9}-\beta ^{9}$, where n $\in$ N?

Can you answer this question?

1 Answer

0 votes
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
$\alpha$ and $\beta$ are the roots of $x^2-2x+4=0$
Solving the equation $x=\large\frac{2\pm\sqrt{4-16}}{2}$
$\Rightarrow \large\frac{2\pm 2i\sqrt 3}{2}$
$\Rightarrow 1\pm i\sqrt 3$
Step 2:
Let $\alpha=1+i\sqrt 3$ and $\beta=1-i\sqrt 3$
Let $1+i\sqrt 3=r(\cos\theta+i\sin\theta).$
Equating the real and imaginary parts separately,
$r\sin\theta=\sqrt 3$
Step 3:
Squaring and adding $r^2=1+3=4$
$\Rightarrow r=2$
Also $\tan^{-1}\sqrt 3=\large\frac{\pi}{3}$
Therefore $\alpha=2(\cos\large\frac{\pi}{3}$$+i\sin\large\frac{\pi}{3})$
Step 4:
Hence proved.
Step 5:
$\qquad\quad\;=i2^{10}\sin 3\pi$


answered Jun 11, 2013 by sreemathi.v
edited Jul 19, 2013 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App