logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  TN XII Math  >>  Complex Numbers
0 votes

If $ \alpha$ and $\beta $ are the roots of $x^{2}-2x+4=0$. Prove that $\alpha ^{n}-\beta ^{n}=i2^{n+1}sin\large\frac{n\pi }{3}$ and calculate $\alpha ^{9}-\beta ^{9}$, where n $\in$ N?

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • From De moivre's theorem we have
  • (i) $(\cos\theta+i\sin\theta)^n=\cos n\theta+i\sin n\theta,n\in Q$
  • (ii) $(\cos\theta+i\sin\theta)^{-n}=\cos n\theta-i\sin n\theta$
  • (iii) $(\cos\theta-i\sin\theta)^n=\cos n\theta-i\sin n\theta$
  • (iv) $(\sin \theta+i\cos \theta)^n=[\cos(\large\frac{\pi}{2}$$-\theta)+i\sin(\large\frac{\pi}{2}$$-\theta)]^n=\cos n(\large\frac{\pi}{2}$$-\theta)+i\sin n(\large\frac{\pi}{2}$$-\theta)$
  • $e^{i\theta}=\cos\theta+i\sin\theta$
  • $e^{-i\theta}=\cos\theta-i\sin\theta$,also written as $\cos\theta$ and $\cos(-\theta)$
Step 1:
$\alpha$ and $\beta$ are the roots of $x^2-2x+4=0$
Solving the equation $x=\large\frac{2\pm\sqrt{4-16}}{2}$
$\Rightarrow \large\frac{2\pm 2i\sqrt 3}{2}$
$\Rightarrow 1\pm i\sqrt 3$
Step 2:
Let $\alpha=1+i\sqrt 3$ and $\beta=1-i\sqrt 3$
Let $1+i\sqrt 3=r(\cos\theta+i\sin\theta).$
Equating the real and imaginary parts separately,
$r\cos\theta=1$
$r\sin\theta=\sqrt 3$
Step 3:
Squaring and adding $r^2=1+3=4$
$\Rightarrow r=2$
Also $\tan^{-1}\sqrt 3=\large\frac{\pi}{3}$
Therefore $\alpha=2(\cos\large\frac{\pi}{3}$$+i\sin\large\frac{\pi}{3})$
$\beta=2(\cos\large\frac{\pi}{3}$$-i\sin\large\frac{\pi}{3})$
Step 4:
$\alpha^n-\beta^n=2^n(\cos\large\frac{\pi}{3}$$+i\sin\large\frac{\pi}{3})^n$$-2^n(\cos\large\frac{\pi}{3}-$$i\sin\large\frac{\pi}{3})^n$
$\qquad\quad\;=2^n[(\cos\large\frac{\pi}{3}$$+i\sin\large\frac{\pi}{3})^n$$-(\cos\large\frac{\pi}{3}-$$i\sin\large\frac{\pi}{3})^n$
$\qquad\quad\;=2^n.2i\sin\large\frac{n\pi}{3}$
$\qquad\quad\;=i2^{n+1}\sin\large\frac{n\pi}{3}$
Hence proved.
Step 5:
$\alpha^9-\beta^9=i2^{9+1}\sin\large\frac{9\pi}{3}$
$\qquad\quad\;=i2^{10}\sin 3\pi$
$\qquad\quad\;=0$

 

answered Jun 11, 2013 by sreemathi.v
edited Jul 19, 2013 by balaji.thirumalai
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...