Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

In an entrance examination a student has to answer all the $120$ questions. Each question has four options and only one option is correct. A student gets $1$ mark for a correct answer and loses half mark for a wrong answer. What is the expectation of the mark scored by a student if he chooses the answer to each question at random?

Can you answer this question?

1 Answer

0 votes
  • If S is a sample space with a probability measure and X is a real valued function defined over the elements of S, then X is called a random variable.
  • Types of Random variables :
  • (1) Discrete Random variable (2) Continuous Random variable
  • Discrete Random Variable :If a random variable takes only a finite or a countable number of values, it is called a discrete random variable.
  • Continuous Random Variable :A Random Variable X is said to be continuous if it can take all possible values between certain given limits. i.e., X is said to be continuous if its values cannot be put in 1 − 1 correspondence with N, the set of Natural numbers.
  • The probability mass function (a discrete probability function) $P(x)$ is a function that satisfies the following properties :
  • (1) $P(X=x)=P(x)=P_x$
  • (2) $P(x)\geq 0$ for all real $x$
  • (3) $\sum P_i=1$
  • Moments of a discrete random variable :
  • (i) About the origin : $\mu_r'=E(X^r)=\sum P_ix_i^{\Large r}$
  • First moment : $\mu_1'=E(X)=\sum P_ix_i$
  • Second moment : $\mu_2'=E(X^2)=\sum P_ix_i^2$
  • (ii) About the mean : $\mu_n=E(X-\bar{X})^n=\sum (x_i-\bar{x})^nP_i$
  • First moment : $\mu_1=0$
  • Second moment : $\mu_2=E(X-\bar{X})^2=E(X^2)-[E(X)]^2=\mu_2'-(\mu_1')^2$
  • $\mu_2=Var(X)$
Step 1:
Let $X$ be the random variable denoting the number of marks the student can score while answering 1 question.
The values $X$ can take are 1(for correct answer) or $-\large\frac{1}{2}$(for a wrong answer)
Step 2:
$P(X=1)=\large\frac{1}{4}$ (Since only one out of 4 options is correct)
Step 3:
The probability distribution of $X$ is given by
Step 4:
$E(X)=\sum P_i x_i=1\times \large\frac{1}{4}+(-\large\frac{1}{2})\times \large\frac{3}{4}$
Step 5:
There are 120 questions in the test.
$\therefore$ expected marks=$120\times -\large\frac{1}{8}=$$-15$
answered Sep 17, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App