Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The probability distribution of a random variable $x$ is given below: \[\] $\begin{array} {llllllll} \textbf{X:}& 0& 1& 2& 3 \\ \textbf{P(X=x):}& 0.1& 0.3 &0.5& 0.1& \end{array}$\[\] If $Y=X^{2}+2X$ find the mean and variance of $Y$.

Can you answer this question?

1 Answer

0 votes
  • Moments of a discrete random variable :
  • (i) About the origin : $\mu_r'=E(X^r)=\sum P_ix_i^{\Large r}$
  • First moment : $\mu_1'=E(X)=\sum P_ix_i$
  • Second moment : $\mu_2'=E(X^2)=\sum P_ix_i^2$
  • (ii) About the mean : $\mu_n=E(X-\bar{X})^n=\sum (x_i-\bar{x})^nP_i$
  • First moment : $\mu_1=0$
  • Second moment : $\mu_2=E(X-\bar{X})^2=E(X^2)-[E(X)]^2=\mu_2'-(\mu_1')^2$
  • $\mu_2=Var(X)$
Step 1:
$E(X)=\sum x_i P_i=0\times 0.1+1\times 0.3+2\times 0.5+3\times 0.1$
$E(X^2)=\sum x_i^2P_i=0\times 0.1+1\times 0.3+4\times 0.5+9\times 0.1$
$E(X^3)=\sum x_i^2P_i=0\times 0.1+1\times 0.3+8\times 0.5+27\times 0.1$
$E(X^4)=\sum x_i^2P_i=0\times 0.1+1\times 0.3+16\times 0.5+81\times 0.1$
Step 2:
Now $Y=X^2+2X$
$\quad\quad=3.2+2\times 1.6$
Step 3:
$\qquad\;\;=16.4+4\times 7+4\times 3.2$
Step 4:
answered Sep 17, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App