(9am to 6pm)

Ask Questions, Get Answers

Want help in doing your homework? We will solve it for you. Click to know more.

Find the mean and variance for the following probability density functions $f(x) = \left\{ \begin{array}{l l} \alpha e^{-\alpha x} ,& \quad \text{if $x$$>$$0$}\\ 0 ,& \quad \text{otherwise} \end{array} \right.$

1 Answer

Need homework help? Click here.
  • Let X be a continuous random variable with probability density function f(x). Then the mathematical expectation of X is defined as $E(X)=\int_{-\infty}^\infty x f(x)dx$
  • $E(\phi (X))=\int_{\infty}^{\infty}\phi(x) f(x)dx$
  • Var$(X)=E(X^2)-[E(X)]^2$
  • $E(c)=c$
  • $E(aX\pm b)=aE (X)\pm b$
Step 1:
$E(X)=\int_{-\infty}^\infty x f(x) dx$
$\qquad=\int_0^\infty x\alpha e^{-\alpha x}dx$
$\qquad=\alpha\bigg[x\large\frac{e^{\Large -\alpha x}}{-\alpha}-$$1.\large\frac{e^{\Large -\alpha x}}{\alpha^2}\bigg]_0^{\infty}$
Mean =$\large\frac{1}{\alpha}$
Step 2:
$E(X^2)=\int_{\infty}^\infty x^2f(x)dx$
$\qquad=\int_0^{\infty} x^2e^{-\alpha x} dx$
Here $u=x^2$
$v=\large\frac{e^{\Large -\alpha x}}{-\alpha}$
$v_1=\large\frac{e^{\Large-\alpha x}}{\alpha^2}$
$v_2=\large\frac{-e^{\Large-\alpha x}}{\alpha^3}$
$\qquad\;\;=\large\frac{-x^2e^{\Large-\alpha x}}{\alpha}-\frac{2xe^{\Large-\alpha x}}{\alpha^2}-\frac{2e^{\Large-\alpha x}}{\alpha^3}\bigg]_0^\infty$
Step 3:
answered Sep 17, 2013 by sreemathi.v

Related questions