Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the equation of the line which passes through the point $(1, 2, 3)$ and is parallel to the vector $3\hat{i} + 2\hat{j} -2\hat{k}$. .

$\begin{array}{1 1} \overrightarrow r = (\hat i +2 \hat j + 3\hat k)+t ( 3\hat i + 2\hat j - 2\hat k) \\\overrightarrow r = (3\hat i +2 \hat j -2\hat k)+t ( \hat i + 2\hat j +3\hat k) \\ \overrightarrow r = (2\hat i -5\hat k)+t ( \hat i + 2\hat j - \hat k) \\ \overrightarrow r = (2\hat i - \hat j + 4\hat k)+t (2 \hat i - 5\hat k)\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Equation of the line passing through a point and parallel to a vector is given by $\overrightarrow r =\overrightarrow a+t \overrightarrow v$
Let $ \overrightarrow {OA}= \hat i+2 \hat j+3 \hat k$ and $ \overrightarrow {v}= 3\hat i+2 \hat j-2 \hat k$
We know $\overrightarrow r =\overrightarrow a+t \overrightarrow v$
Substituting for $\overrightarrow a$ and $ \overrightarrow v$
Hence the vector equation of the line is
$\overrightarrow r=(\hat i+2 \hat j+ 3\hat k)+t(3 \hat i+2 \hat j-2 \hat k)$
Where $t$ is any real number
answered Jun 4, 2013 by meena.p
edited Apr 12, 2016 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App