Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let $X$ have a poisson distribution with mean $4$.Find $(i) \;P(X\leq $3$)\qquad[e^{-4} = 0.0183].$

Can you answer this question?

1 Answer

0 votes
  • A random variable $X$ is said to have a poisson distribution of the probability mass function of $X$ is
  • $P(X=x)=\large\frac{e^{-\lambda }\lambda^x}{x!}$$\qquad (x=0,1,2........$ for some $\lambda > 0)$
  • Constants of a poisson distribution : Mean=Variance=$\lambda$
  • A continuous random variable $X$ is said to follow a normal distribution with parameter $\mu$ and $\sigma$ (or $\mu$ and $\sigma^2$) if the probability density function is
  • $f(x)=\large\frac{1}{\sigma \sqrt{2\pi}}$$e^{-\large\frac{1}{2}(\frac{x-\mu}{\sigma})^2};-\infty < x < \infty,-\infty< \mu <0$ and $\sigma > 0$
  • $X\sim N(\mu,\sigma)$
  • Constants of a normal distribution :
  • Mean =$\mu$,variance =$\sigma^2$,standard deviation =$\sigma$
Step 1:
$X\sim P(4)$
$\therefore P(X=x)=\large\frac{e^{\Large -4}4^{\Large x}}{x!}$$\qquad x=0,1,2....$
Step 2:
$P(X\leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)$
$\qquad\qquad=e^{\Large -4}\big[\large\frac{4^0}{0!}+\frac{4^1}{1!}+\frac{4^2}{2!}+\frac{4^3}{3!}\big]$
answered Sep 18, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App