Ask Questions, Get Answers


Alpha particles are emitted by a radio active source at an average rate of $5$ in a $20$ minutes interval.Using poisson distribution find the probability that there will be at least $2$ emission in a particular $20$ minutes interval .$[e^{-5}=0.0067].$

1 Answer

  • A random variable $X$ is said to have a poisson distribution if the probability mass function of $X$ is
  • $P(X=x)=\large\frac{e^{\Large -\lambda }\lambda^x}{x!}$$\qquad (x=0,1,2........$ for some $\lambda > 0)$
  • Constants of a poisson distribution :
  • Mean=Variance=$\lambda$
  • The parameter of the Poisson distribution is $\lambda$
  • A Poisson random variable corresponds to rare events.
Step 1:
Let $X$ be the random variable denoting the number of alpha particles emitted in a 20 minutes interval .
$X$ follows a poisson distribution with mean =5 particles in a 20 minutes interval.
$\therefore \lambda=5$
$X\sim P(5)$
$P(X=x)=\large\frac{e^{-5}5^x}{x!}$$\quad x=0,1,2.........$
Step 2:
Probability of at least 2 emissions in a 20 minutes interval
$P(X\geq 2)=1-P(X<2)$
answered Sep 18, 2013 by sreemathi.v

Related questions